21 一般装置における二装置間の拡大率の検討

上尾中央総合病院

○鈴木マリア 金野元樹 舘林正樹

佐々木健 佐々木和義 田中武志

【背景】

従来、一般撮影のSIDは100cm、200cmが基本 である。当院ではFPD導入の際、骨撮影のSIDを 内蔵グリッドの集束距離から130cmに設定した。 FPD、CRで重複する撮影部位では、同一患者に おいて画像全体の拡大率が異なる写真を提供する 可能性があり、フォローアップ時に比較し辛いの ではないかと考えた。

【目的】

当院においてCRとFPDで重複して撮影する頻 度が最も高い頭部撮影について検討した。

報告内容は同一患者における臨床提供画像の拡 大率差の修正である。

【使用機器】

- ・X線装置 SHIMADZU 0.6/1.2P3800E-85
- · Canon CXDI 50G ver.6.27
- Kodak Direct View CR975
- ・鉄球 (*φ*40mm)
- ・TAFF WATERファントム 京都科学社
- X-rayグリッド (5:1)
- ・矩形波チャート

【方法】

1. 拡大率差の検証

鉄球をFPDまたはCR表面から10cm、20cm点に 設置し、SID100cmおよび130cmとした場合のそれ ぞれの拡大率を測定した。

2. SIDの検討

方法1の結果よりCRのSIDを伸ばしていかなけ ればならないことが判明した。CRのSIDを100~ 140cmまで10cm刻みで伸ばし、10cm点および 20cm点においての拡大率を測定した。

撮影条件の検討

方法2の結果よりSIDを設定することが出来た。 SIDの可変に伴い撮影条件の調整が必要になる。 撮影条件の決定方法として以下の二通りによって 算出した。また当院における従来の撮影条件は以 下の通りである。

従来撮影条件:70kV 320mA 63ms

- 皮膚表面線量:1.595mGy
- ① 延長距離分のmAs値を距離の逆二乗則から算 出。
- NDD-M法を用い、CRの皮膚表面線量と同等になる撮影条件を算出。
- 4. 画像評価(MTFの測定)

CR:100cmの従来の撮影距離と距離の逆二乗則 で求めた撮影条件2種類と、NDD-M法で求めた従 来の皮膚表面線量に一番近い線量となる条件、合 計4種類の撮影条件を用いて矩形波チャートを撮 影しMTFを求めた。

【結果】

1. 拡大率差の検証

測定点を10cm、20cmとしFPD:100cm、130cm およびCR:100cm、130cmの拡大率を測定した結 果を表にまとめた。

		SID	鉄球の大きさ	拡大率	拡大率差	
		(cm)	(cm)		(%)	
10cm	FPD	130	4.45	1.11	-	
	CR	100	4.50	1.12	1	
20cm	FPD	130	4.90	1.23	-	
	CR	100	5.10	1.27	3.3	
表1:CRおよびFPDの拡大率差						

CR:100cmではFPD:130cmよりも画像が拡大さ れており、測定値20cmは10cmと比べると拡大率 差は大きいことがわかる。以上より、FPD:130cm を固定してCRのSIDを可変することにした。 2. SIDの検討

CRのSIDを10cmずつ変化させたときのCRの拡 大率差を表にまとめた。

測定位置 (cm)	SID (cm)	鉄球の大きさ (cm)	拡大率
	100	4.50	1.13
	110	4.45	1.11
10	120	4.40	1.10
	130	4.35	1.09
	140	4.30	1.08
	100	5.10	1.27
	110	4.95	1.24
20	120	4.90	1.23
	130	4.80	1.20
	140	4.70	1.18

表2:CRのSID可変による拡大率差

表2より、画像全体の拡大率と同等にするため にCRのSIDを120cmに設定した。

- 3. 撮影条件の検討
- ①距離の逆二乗則による算出

SID:100cmの撮影条件からSID:120cmでのmAs 値を計算した。計算方法および結果は以下に示す。 (120/100)²×20mAs=28.8mAs

当院では28.8mAsという撮影条件は設定できな いため28mAsおよび32mAsにおいて画像評価の検 討をした。

管電圧 (kV)	管電流 (mA)	撮影時間 (ms)	mAs 値	表面皮膚線量 (mGy)
75	320	80	25	1.512
76	320	80	25	1.556
77	320	80	25	1.600
78	320	80	25	1.645
79	320	80	25	1.689
80	320	71	22	1.537

表3:各撮影条件のNDD-M法による算出結果

②NDD-M法による算出結果

各撮影条件のNDD-M法による算出結果を表に まとめた。

表3の結果よりCR:100cmの表面皮膚線量に最も 近い77kV、320mA、80msを用いた。

4. 画像評価 (MTFの測定)

CR:100cmの従来の撮影条件と距離の逆2乗則で 求めた撮影条件2種類、およびNDD-M法で求めた 従来の表面皮膚線量に一番近い線量となる条件の 合計4種類の撮影条件を用いて矩形波チャートを 撮影し、MTFを求めた。

図1:MTF測定結果

0.5~2.5LP/mmまでは良好に視認でき、MTF解 析結果も全ての条件でほぼ一致した。

【考察・課題】

逆二乗則によるmAs値の設定は撮影時間に顕著 な増加がみられたので、管電圧との調整を行い短 縮化を図る必要がある。しかし、管電圧を変化さ せた場合、画像コントラストの変化が起こるため、 コントラスト評価による調整が必要となる。

【結語】

頭部撮影においてCRのSIDを変化させることで FPDとの画像拡大率を合わせることができた。ま た表面皮膚線量が同等であり、撮影時間が現実的 かつMTFも安定していた77kV、320mA、80msを CRにおける頭部撮影条件と設定することができ た。